The University of Manchester Sustainable Consumption Institute

What can consumer accounting tell us about measuring progress towards a low carbon society?

CCCEP and UKERC Workshop, July 2011 Dr Alice Bows: lecturer in energy & climate change

Summary

Cumulative emissions

2°C pathways

Need for urgency

Contrasting production & consumption pathways

Application: consumption-based scenarios

Conclusions

Influencing the future

Decisions made now impact on future adaptation

Higher Mitigation = Lower Adaptation

Lower Mitigation = Higher Adaptation

Where current influence is leading...

Global emissions continuing to grow exponentially UK policies not delivering in line with 2°C

Lower Mitigation = Higher Adaptation

Currently policies in line with 4°C by 2100

What can be done to avoid this?

(Anderson & Bows, 2010; Betts et al., 2010; Rogelj et al., 2010)

Cumulative emissions

Illustrative pathway for a CO₂e budget

Annual CO2e emissions

Illustrative pathway for a CO₂e budget

Annual CO2e emissions

Don't focus on end-point targets

Focus on the cumulative budget

Implications of different budgets

Anderson & Bows, 2011, Beyond 'dangerous' climate change: emission scenarios for a new world, *Phil Trans A*, **369**, 20-44

Implications of different budgets

Implications of different peak

What can be tackled urgently?

Energy implications

Institute

Big picture – Energy Lens

Urgent reductions point to demand management

Sustained rapid reductions require supply & demand

Rates of reduction challenge economic orthodoxy

Down-scale to explore drivers and solutions...

Basic separation: Annex 1 vs non-Annex 1

Separate emissions by Annex 1/non-Annex 1

Conventional – use production based accounts

Unconventional – use consumption based accounts

Does this change the conclusion regarding demand?

Production-based

Set non-Annex 1 pathway. Q: What is remaining for Annex 1?

Production-based implications for avoiding 2°C

Lower than trend growth in non-Annex 1 required

Little room for Annex 1

Immediate reductions in Annex 1 + early peak in non-Annex 1 essential

Reductions well in excess of 'economically acceptable' levels

Need to understand driver of growth in non-Annex 1

Can consumption-based accounting shed light?

Historical Trend

Sustainable Consumption Institute * Including international aviation and shipping

INFORMING CHOICE LEADING CHANGE

Consumption-based

Bows & Barrett, 2010, Cumulative emission scenarios using a consumption-based approach, Carbon Management, 1, 161-175

Consumption-based implications for avoiding 2°C

Recent Annex 1 emission growth more rapid under a consumption-lens

'High Avoidance' budget still has little room for growth

Extra burden on Annex 1 makes strictest reduction pathways more viable

Most relevant for nations like UK – but not all Annex 1 are like UK

Need to target Annex 1 consumption and influence supply chains

This could help to reduce consumption-emission growth in non-Annex 1

Otherwise non-Annex 1 consumption emissions will dominate very soon

Delay in tackling climate change means budget more important than accounting framework for 2°C targets and below

Application

SCI: Food supply chain project

Quantitatively:

1.Multi-Regional InputOutput Model (UK:EU: Other Annex B:Non Annex B)2.Life Cycle Analysis

Qualitatively:

Stakeholder
Interviews
Literature review

Characterise 'final demand', and supply systems in future

The starting point.. 2004

2004

Current Ambitious Policy – Annex 1

Step 1: 90% reduction in emissions intensity from all Annex B sectors except:

Complete decarbonisation Annex 1

Remainder - imports from non-Annex 1 to intermediate demand

Institute

Decarbonisation Annex 1 + Non Annex 1 Effort

Step 3: 65% reduction in emissions intensity of non-Annex 1 sectors except Aviation (58%)

Institute

Historic and future trends

Strong decarbonisation with growth

Step 4: Apply population and economic growth

Consumption Institute

Strong decarbonisation + lower carbon growth

Step 5: Shift consumption to lower carbon products (recreation)

Institute

Conclusions

Emissions must reduce urgently for 2°C pathways

Particularly stark for Annex 1 under production based accounting

Less stark using consumption based accounting but little room for Annex 1 growth

Urgency requires a broadening of policy emphasis from tackling energy supply to tackle a) energy demand and b) what and how much citizens consume

Consumption approach increases Annex 1 influence over global emission growth

Doesn't need to be active nationally – organisations can play a role

2°C demands immediate reductions irrespective of the accounting approach

Economic growth and rising consumption impediment to 2°C emission reductions

Wood, F.R., Bows A., Barrett J., Dawkins, E., Mander, S., McLachlan, C., Roeder, M., Scott, K. The development of scenarios to examine the role of technology change and consumers in delivering cumulative emission reductions and adapting to climate impacts under a 2°C& 4°C future. International Society for Industrial Ecology Conference 2011, Berkeley 9-11 June 2011.

Anderson & Bows, 2011, Beyond 'dangerous' climate change: emission scenarios for a new world, Phil Trans A, 369, 20-44

Bows & Barrett, 2010, Cumulative emission scenarios using a consumption-based approach, Carbon Management, 1, 161-175

Anderson & Bows, 2008, Reframing the climate change challenge in light of post-2000 emission trends, *Phil Trans A*, **366**, 3863-3882 Sustainable Consumption Institute

% Change on Baseline from Annex 1 Mitigation Only

% Change on Baseline from Annex 1 & Non Annex 1 Mitigation

