

Policy Relevance of Consumption Based Accounting

Prof. Arnold Tukker, TNO, Delft, Netherlands and NTNU, Trondheim, Norway Project Manager EXIOPOL and CREEA Workshop 'Consumer Based Accounting – Implications for Policy'. London, UK, 5 July 2011 <u>Arnold.tukker@tno.nl</u>

TNO innovatio for life

Presentation Elements

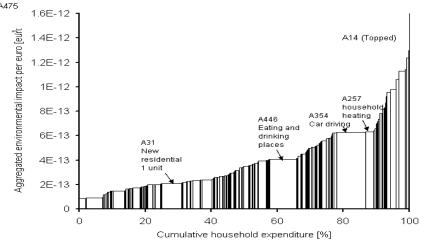
- Consumer based environmental accounting
 - > What is it?
 - > What are the main characteristics of ongoing projects?
 - > What is the policy relevance ?
 - My own background
 - Manager at TNO, a large not for profit research institute in NL
 - Professor of Sustainable Innovation, Industrial Ecology Program, NTNU, Trondheim, Norway
 - Leader of EU funded MR EE IO projects of EXIOPOL and CREEA (total 6 Mio Euro, 10-15 partners)

Consumption and Production based accounts – SUT and IOT

	Products	Industries			
Products		Use	Final use	Exports	Use of products
Industries	Make / Supply				Output of industries
	Imports cif	Value added			
	Supply of products	Input of industries			
		Extensions: - Primary Natural Resource input - Emissions outp - etc.			

- > EE SUT for a single country
 - > Economic Supply and Use
 - By industry: emissions and primary resource use

innovation


- > Can provide you
 - Per final use category: value added by industry
 - With impact per Euro per industry known: life cycle impacts per final use category
- Advantages
 - > Inherently complete
 - > Inherently consistent

What you can calculate with EE SUT and IOT

- EU EIPRO (480 sector EE IOT)
 - Priority setting of products
 - Proved that food, mobility and housing were prio's
- EU Diet change
 - Change to healthy diets by changing demand vector
 - Showed rebounds by linking EE IOT to the CAPRI model
- Limitations of official data in EU
 - > Sector detail (60+)
 - Emissions (few or absent)
 - Imports estimated by
 - 'domestic technology ass'

innovation

Tukker (ed., 2006), Journal Industrial Ecology 10: 3

	Aggregated environmental impacts (%)						
	Scenario O: Status quo	Scenario 1: Recommendations	Scenario 2: Recommendations including red meat reduction	Scenario 3: Mediterranean			
Sub-scenario 'All'							
Food	27	27	25	25			
Non-food	73	73	73	73			
Total	100	100	98	98			
Sub-scenario ' All + first order'							
Food	27	27	25	25			
Non-food	73	73	74	73			
Total	100	100	99	98			
Sub-scenario 'All + first and second orders'	100	100	99	99			

Tukker et al., 2011, Ecological Economics (in press)

TNO innovation for life

Alternative: LCA based consumer accounting

- > Approach
 - Choose functional unit
 - Identify production chain system boundaries
 - > Do emission inventory
 - Do impact assessment and interpretation
- Is more detailed but may be less consistent and give rise to truncation errors

So what you need: detailed Multi-Regional EE SUT SUT/IOT

Ideal solution: a database that links country SUT/IOT via trade

- Country SUT/IOT including
 value added and final demand
 (red)
- Import and export trade matrices for intermediate and final demand (green)
- Exensions: emissions, energy, materials (grey)
- Preferably with detail in
- environmentally relevant sectors..
- ..and many emissions/extensions

		Indus	tries		Y _{*,A}	Y _{*,B}	Y _{*,C}	Y _{*,D}	q
	Z _{A,A}	Z _{A,B}	Z _{A,C}	Z _{A,D}	Y _{A,A}	Y _{A,B}	Y _{A,C}	Y _{A,D}	q _A
ucts	Z _{B,A}	Z _{B,B}	Z _{B,C}	Z _{B,D}	Y _{B,A}	Y _{B,B}	Y _{B,C}	Y _{B,D}	q _D
Products	Z _{C,A}	Z _{C,B}	Z _{c,c}	Z _{C,D}	Y _{C,A}	Y _{C,B}	Y _{C,C}	Y _{C,D}	q _c
	Z _{D,A}	Z _{D,B}	Z _{D,C}	Z _{D,D}	Y _{D,A}	Y _{D,B}	Y _{D,C}	Y _{D,D}	q _D
w	W _A	W _B	W _c	W _D					
g	g _A	gв	gc	g _D					
& L	Capital _A	C _B	C _C	C _D					
Ű	Labor _A	L _B	L _C	L _D					
	NAMEA _A	NAMEA _B	NAMEA _C	NAMEA _D					
_ع	Agric _A	Agric _B	Agric _c	Agric _D					
D E	Energy _A	Energy _B	Energy _c	Energy _D					
Environ Ext	Metal _A	Metal _B	Metal _c	Metal _D					
—	Mineral _A	Mineral _B	Mineral _c	Mineral _D					
	Land _A	Land _B	Land _c	Land _D					

innovation

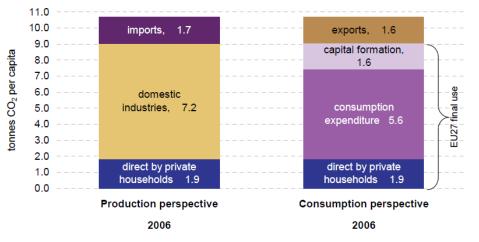
TNO innovation for life

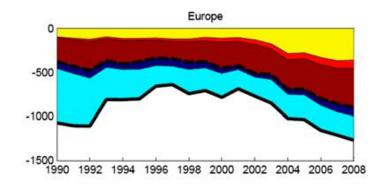
Major (research) initiatives in creating (Global) MR EE SUT/IOT

Project name	Funding	Countries	Туре	Detail (ixp)	Time	Extensions	Approach
IDE JETRO	Japan	Asia	MR		2000,	-	Harmonize IOT; Link via trade; move
(Inomata)		Pacific (10)	IOT		2004		discrepancies to RoW
GTAP (Hertel)	Subscrip-	World (113)	MR	58x58	2000,	10 (GWP)	Harmonize trade; use IOT to link trade sets;
	tion		IOT		2004		relative crude IOT estimates
WIOD	EU FP7	World (40)	MR	30x60	1995?-	20+	Harmonize SUT; Link via trade; problems with
(Dietzenbacher,			SUT		2000-		discrepancies
RUG)					2006		
EXIOPOL/	EU	World (43)	MR	129x129	2000,	30 emissions, 60	Create SUT bp; Split Use_dom and Use_imp;
CREEA (Tukker,	FP6/7		SUT		2007	IEA energy	Detail and Harmonize SUT; Use trade shares to
TNO & NTNU))						carriers; water,	estimate implicit exports; confront with exports in
						land, 80 resources	SUT, RAS out differences, add extensions
AISHA/	Austral-	World,	MR	t.b.d	1990-	t.b.d.	Create initial estimate; Gather all data available;
EORA (Lenzen,	ian NSF	t.b.d.	SUT	(>150?)	2006?		apply in original format; Formulate constraints;
Un. Syndney)		(200?)					Detect & judge inconsistencies; Let routine
							calculate Global MR SUT/IOT
Eurostat	Eurostat	EU 27	SUT	59x59	1995-	10 (GWP)	Create SUT bp, Split intra and extra EU trade,
(Remond-		aggregate			2007	-	aggregate to EU27 totals, remove intra EU
Tiedrez, Moll)							imports / export differences to RoW, add
							extensions

Note: WIOD seems only project that develops current and constant price tables

The contribution of EXIOPOL and CREEA


- > EXIOPOL
 - > Unique detail and large number of extensions
 - > Focused on environmentally relevant sectors (agri, energy, mining, etc.)
- > FP7 CREEA (Compiling and Refining Economic Environmental Accounts)
 - > Will be used to update EXIOBASE to 2007
 - > Will expand EXIOPOL/EXIOBASE with physical accounts
 - > Will improve water and land use accounts
 - > Will further test SEEA 2012 carbon and forest accounts
 - We have funds reserved for intensive collaboration with formal circles (e.g. OECD, UNCEEA, UNEP ????)
- Done with partners like TNO, CML, WI, SERI, EU DG JRC IPTS, NTNU,
 2-0 LCA, ETH, TU Twente (Water Footprint), CBS, SCB, EFI, others
- > Have obviously NSIs in Advisory Boards



Example of policy relevant results: pollution embodied in trade

- Eurostat EU 27 EE SUT/IOT on carbon footprint
- One caveat
 - 'Domestic Technology
 Assumption" -> EU seems
 carbon-neutral in trade....
- ...where other studies show
 carbon in imports is a factor
 2-3 higher as in exports.....
- EXIOPOL can make such calculations for all 110 extensions

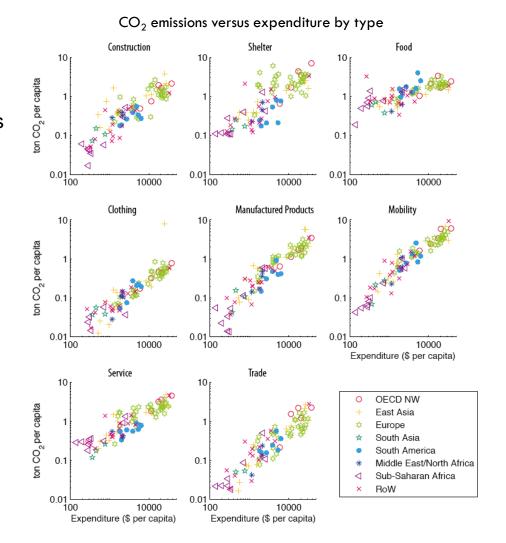
innovation

Net carbon trade EU. Peters et al, PNAS, 2010

NO innovation

Example of policy relevant results (2)

- > Food: meat, dairy (25-30%)
- Mobilty: car and air transport (20-25%)
- > Housing: heating, hot water and materials (>20%)
- > Energy using products: lighting, fridge, other electrical products (>10%)


COICOP	Study	Dall et al.	Kok et al.	Labouze et al.	Nemry et al.	Nijdam and Wilting	CEDA EU25
	Indicator	Energy	Energy	GWP	GWP	GWP	GWP
	Main approach	Bottom-up	Hybrid	Bottom-up	Bottom-up	ю	ю
CP01-02	Food	26,2%	13,0%	7,0%NA	3,6%NA	22,1%	31,0%
CP03	Clothing	1,3%	2,2%	3,3%	1,3%	6,5%	2,4%
CP04-05	Housing	40,8%	54,3%	58,8%	53,5%	33,4%	23,6%
CP06	Health		1,8%		0,3%	0,3%	1,6%
CP07	Transport	19,5%	18,3%	29,6%	32,9%	17,3%	18,5%
CP08	Communication			0,0%	2,9%	0,0%	2,1%
CP09	Recreation	7,2%	8,1%	0,0%		15,1%	6,0%
CP10	Education		1,8%			0,7%	0,5%
CP11	Restaurants					2,8%	9,1%
CP12	Miscellaneous	5,1%	0,4%	1,3%	5,4%	1,8%	5,2%
	TOTAL	100,0%	100,0%	100,0%	100,0%	100,0%	100,0%

Example of policy relevant results (3)

- UNEP Resource Panel Report, Hertwich, Tukker et al. 2010
 - Comparting CO2 emissions by final expenditure by country (GTAP)
 - Doubling of household consumption expenditure gives 80% more CO₂
 - This picture holds for all final consumption categories

innovation for life

So food, housing and mobility are important – one size fits all?

		Food		Mobility		Housing
The system	Score	Comment	Score	Comment	Score	Comment
Agreement on goals	Low	Disconsensus on GMOs, biological food, food miles	Medium	Reducing congestion, emissions accepted, transport volume not	High	Zero-energy houses accepted
Agreement about means	Low	See above	Low	No success stories	Medium	Illustrations available, mainstreaming seems difficult
Geographical characteristics	Global	Most modern food chains span the globe	Global /local	Few manufacturers, local alternatives vary	Local	The building industry is locally organised
Power nodes in the system		Retailers, major food companies		Car producers, infrastructure providers		Varies per country: social housing agencies, land owners, developers, or customers
Potential for						
Consumer- driven change		Consumers can change but locked in by habits	Low	Consumers have often limited choice	Low	consumers have little power on buildings.
Producer- driven change	to high	Retailers (e.g. choice editing), major food companies (cf MSC)	Low to medium	Car industry locked in, alternatives in niches	Medium	Mainstreaming difficult
Government driven change	Medium	GPP and standards		Spatial planning, public transport	Medium	Labelling, standardsa
Main challenges		Negotiating a view on sustainable food and implementing this.		Overcoming various lock-ins		Mainstreaming of proven practices

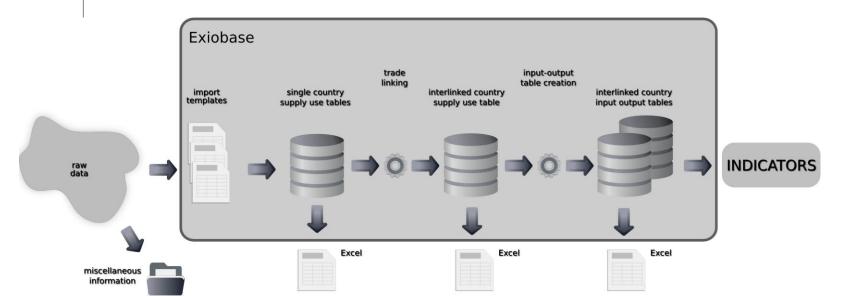
Or, summarizing

- Food: create consensus on sustainability challenge and implement via food chains
- > Mobility: overcome lock in's and offer alternatives of similar quality
- > Housing: proof of concept is there, push implementation through

Conclusions

- > Consumer based environmental accounting is relevant
- In a globalized world pollution embodied in imports become more and more relevant
- (MR) EE IO is a comprehensive tool that can be used
 - > To assess priorities
 - > To monitor historical developments
 - > To extrapolate to the future
- Policy implications the recipe for change differs by consumption domain

THANKS FOR YOUR ATTENTION!



The contribution of EXIOPOL & CREEA

- > The EXIOBASE database has 3 main blocks:
 - 1: Make harmonized EE SUT (EU27+16 others > 95% global GDP)
 - 130 sectors & products
 - > 30 emissions, 80 resources, 60 IEA energy carriers, land, water
 - > Handles indicators like EF, MFA, external costs, LCIA
 - > 2: Split Use imp and Use dom, link via trade to global MR EE SUT
 - Split up Use import via UN COMTRADE trade shares
 - > Yields implicit exports // exports in S -> rebalancing needed..
 - ...affects tables & GDP but alternative is 'trade with aliens'
 - > 3: Make global pxp and ixi MR EE IOT by collapsing MR EE SUT

TNO innovation for life

Relations between SUT and IOT

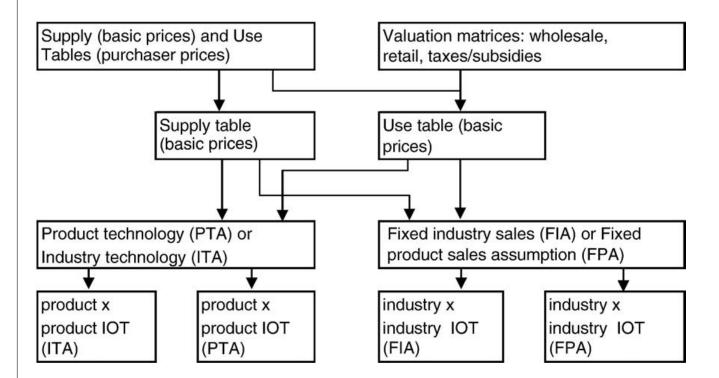


Figure courtesy of Jose Rueda Cantuche, EU DG JRC IPTS, Sevilla, Spain

How EXIOPOL did produce its data set - SUT

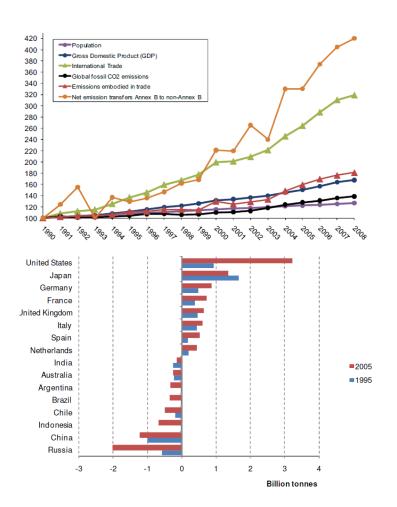
- > Working with SUT as core (// GTAP, IDE)
 - Trade and FD is in products
 - > Emissions and resource extractions are by Industry
- Production routine
 - > Gather and create balanced SUT in bp in original sector format
 - EU: Eurostat SUT with S in bp, U in pp, few give valuation layers > reverse engineer Ubp from IOT and Sbp
 - > Non EU: often IOT, heroic assumption of diagonal S
 - Detail
 - > Map SUT bp on EXIOPOL classification
 - > Úse auxiliary information and optimisation routine to create detail
 - > AgriSAMS for food and agriculture
 - IEA database, information on material extraction, LCA co-efficients, SUT/IOT othe countries for estimated co-efficients

TNO innovation for life

How EXIOPOL created its data set - EE

- Resources: allocation SERI (FAO, USGS, etc.) database to extracting sectors
- Emissions
 - Allocation of EIA database to sectors + emission factors (IPCC, CLRTAP, etc.)
 - > Other activity variables + emission factors
- > Land, Water: mainly FAOSTAT plus allocation

How EXIOPOL created its data set – Trade links


- > Use bp is separated in Use dom and Use imp
- Use imp is further allocated to country of origin with trade shares (harmonized UN COMTRADE by Feenstra et al.)
- > When we do so for all countries, we get an 'implicit export' by country that in theory should match export vector in Use table
- It does not due to
 - > Valuation differences (cif versus fob)
 - > Statistical differences / error
- > We match this by
 - > Using Exports in SUT as constraint;
 - Rescaling so that total imports = total exports at global level
 - GRAS is applied to the bilateral Import Use tables to get a balanced system

Relevance of imports - MR EE SUT and IOT

- > Peters et al., PNAS 2010:
 - > Global CO2 emissions (black)
 - Transfer from Annex B to non Annex B (yellow)
 - Similar work of Ahmad and Wyckoff, 2003, Davis and Caldeira, 2010
- Giljum et al. (in press)
 - Focuses on materials
 - Gives net materials imports and exports in trade

innovation for life

TRO innovation for life

Longer term roadmap ideas for EE SUT/IOT

- > Further harmonization of SUT/IOT in more detail
- > Expanding number of countries covered
- > Integration with physical data to P-SUT (e.g. with FAO and IEA data)
- > Harmonizing trade data sets/shares (both economic as physical)
- Integration of Life cycle inventory data (is SUT/IOT by single process)
- > Integration of spatially explicit information for land and water use
- > Inclusion of monetary and physical capital stocks

Some issues about data availability

- Eurostat works with
 - > IPTS and Konstantz on gap filling ESA95 SUT
 - > TNO, RUG, NTNU, CML on creating an EE SUT
- > For 16 out of 27 EU countries (75% GDP) an 'Excellent data set'
 - > 3-4 countries with valuation layers transmitted to Eurostat
 - > 12 other countries that give voluntary information, but many do not want to have this published!!!!!
- > Even in our Eurostat project we could not work with these tables
- > We will publish
 - Aggregated EU27 table constructed by separating Uimp, non EU and Uimp, EU, rebalancing intra EU trade
 - > With extensions, and several analyses
- In a way weird WIOD, EXIOPOL are forced to redo this work with less information.....hope with time this will improve