

Climate Change Policy and Governance: Taking Stock and Looking Ahead

Jouni Paavola Centre for Climate Change Economics and Policy (CCCEP) Sustainability Research Institute School of Earth and Environment University of Leeds

Climate change governance for a new global deal

- Reasons for a stall in climate change negotiations and the ways to overcome it;
- Political and institutional determinants of a successful state-based agreement;
- □ <u>Alternatives to state-based agreements;</u>
- Human rights and social justice aspects of climate change governance

Atmospheric commons?

- □ Is climate change a "market failure on the greatest scale the world has seen (Stern, 2007)"?
- □ Or is it a tragedy of a commons?
- □ If it is, what follows?

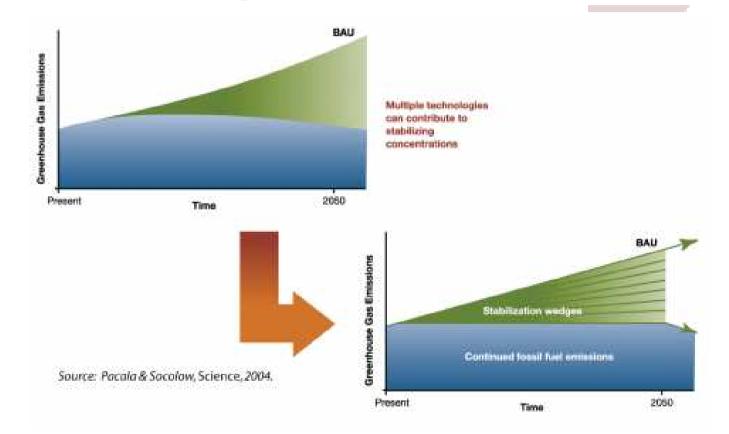
On the global scale, nations are abandoning not only the freedom of the seas, but the freedom of the atmosphere, which acts as a common sink for aerial garbage.

Garrett Hardin, 1998

Global atmospheric sinks (GAS)

- GAS are a stock resource providing a flow a sink services. Their units are rival in consumption
- Number & heterogeneity of users, mixing of emissions: exclusion is costly
- The upshot: GAS is a common-pool resource vulnerable to a "tragedy of the commons"
- Key challenges to constrain use and to distribute benefits & costs of provision and use
- Collective ownership, voluntary measures and values all elements of polycentric governance

Mitigation challenges

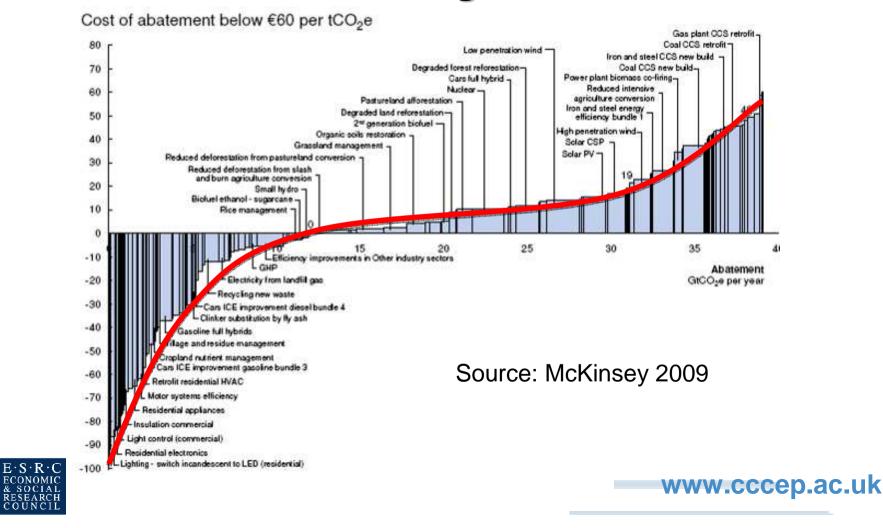


- Global emissions of GHGs would have to be at least halved by 2050 from their 2000 level to maintain warming within 2 degrees.
- This would require 80% GHG emission reductions in Annex 1 countries & reductions by other emitters.
- Equity could require still deeper cuts in developed countries and in other major emitters to maintain room for growth of GHG emissions in the LDCs.

Stabilisation wedges - 50 % CO2 reduction

Stabilisation wedges II

- □ Technologies to cut CO2 emissions by 50 % in 50 years exist to stabilise GHG concentrations at 500 ppm. Examples:
 - 1. Improve average fuel efficiency of cars from 30 mpg to 60 mpg by 2054 yields 1 GtC/y and 25 GtC savings in all
 - 2. Reduce car reliance to achieve 50 % reduction in annual average mileage from 10000 miles to 5000 miles.
 - 3. Produce twice today's quantity of coal-based electricity at 60% instead of 40% efficiency
 - 4. Add 700 GW of nuclear power generating capacity, about twice the nuclear capacity currently deployed globally
 - 5. Wind electricity wedge requires 2000 GWp capacity to replace coal electricity: 50 x today's wind turbine deployment


Costs and benefits of mitigation I

- Stern (2007) suggests that "costs and risks of climate change will be equivalent to losing at least 5% of global GDP each year, now and forever. If a wider range of risks and impacts is taken into account, the estimates of damage could rise to 20% of GDP or more"
- □ Stern suggests that "stabilising GHG concentrations at 500-550 ppm by 2050 would cost 1% of global GDP".
- □ Furthermore, about one third of the GHG emissions reductions needed by 2030 could yield a net benefit.

Costs and benefits of mitigation II

UNFCCC Mitigation Record

- □ The UNFCCC goal is to stabilise GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system
- □ Yet the UNFCCC fails to cap atmospheric GHG concentrations:
 - Safe atmospheric CO2 target estimates have ranged between 400-500 ppm but are increasingly contested as too high;
 - CO2 level stands now at 388 ppm and rising ca 2 ppm annually
 - Potentially dangerous CO2 levels are reached in a decade.
- Kyoto commitments have done little to curb global GHG gas emissions & struggle to deliver 5 % reduction of GHGs in the Annex I countries and 8 % reduction in the EU-15.

Source

EU-15 GHG emissions 1990-2008

Country	target	1990	Changes 1990-2008
	%	Million tonnes	%
Austria	-13.0	78.2	+10.8
Belgium	-7.5	143.4	-7.1
Denmark	-21.0	68.9	-7.4
Finland	0.0	70.4	-0.3
France	0.0	563.2	-6.4
Germany	-21.0	1 231.8	-22.2
Greece	+25.0	105.6	+22.8
Ireland	+13.0	54.8	+23.0
Italy	-6.5	517.0	+4.7
Luxembourg	-28.0	13.1	-4.8
Netherland	-6.0	212.0	-2.4
Portugal	+27.0	59.3	+32.2
Spain	+15.0	285.1	+42.3
Sweden	+4.0	72.4	-11.7
UK	-12.5	771.7	-18.6
EU-15	-8.0	4 224.7	-6.5
EU-27	N/A	5 567.0	-11.3

Source

EU-27 GHG emissions 1990-2008

Country	target	1990	Changes 1990-2008
	%	Million tonnes	%
EU-15	-8.0	4 244.7	-6.5
Bulgaria	-8.0	117.4	-37.4
Cyprus	N/A	5.3	+93.9
Czech	-8.0	195.2	-27.5
Estonia	-8.0	40.8	-50.4
Hungary	-6.0	97.4	-24.9
Latvia	-8.0	26.8	-55.6
Lithuania	-8.0	49.7	-51.1
Malta	N/A	2.0	+44.2
Poland	-6.0	453.3	-12.7
Romania	-8.0	242.1	-39.7
Slovakia	-8.0	73.9	-33.9
Slovenia	-8.0	18.5	+15.2
EU-27	-7.6	5 567.0	-11.3

Emissions in other countries

- Emissions of Australia, Japan and United States increased 15-25 % between 1990-2004
- Emissions of Brazil, India and China increased 60-110
 % between 1990-2004.
- Barrett and Toman (2010) have recently suggested that Montreal Protocol has achieved 4 times greater GHG reductions than KP to date

Weaknesses of the UNFCCC

□ Too few countries have commitments;

Those who have commitments have too lax ones and do not even deliver them;

- □ Too many sources remain outside of commitments
- □ Costly negotiation, lack of political will
- □ Should we consider alternatives?

Polycentricity?

- Empirical base in the post-war public service and good provision in the US
- Ostroms' demonstrated that new overlapping, networked and coreless governance solutions made both economic and political sense
- Vertical differentiation and horizontal dispersion of authority key features, in addition to bottom up processes;
- Is polycentric governance emerging for climate change?

	Monolithic	Fragmented
Symmetry	TD: Federal state BU: Nested irrigators` associations	?? ??
Differentiation	TD: EU environmental directives BU: International conventions	BU: Industry initiatives BU: Local government networks

Cities for Climate Protection (CCP)

- Founded in 1993, a leading but not the only network of local governments.
- CCP expects a local action plan, emission reduction measures, awareness raising, and low carbon procurement from those joining
- □ 550 local governments involved, representing 4% of population and 6 % of GHG emissions globally
- Has achieved CO2 reductions of 60 million tons or about 3 % between 1990-2006
- CO2 reduction generated a net benefit of about \$35 per tonne to local governments.

Government

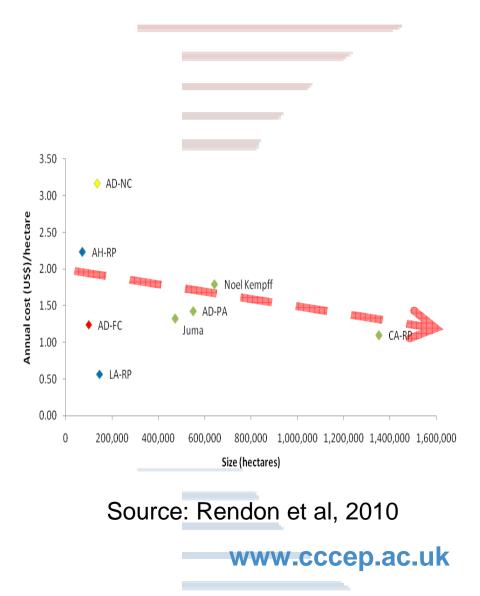
for Sustainabilit

Cement Sustainability Initiative (CSI)

- Formed by the key manufacturers in 2002, considered template of the "sectoral approach"
- Cement production creates 5 % of global CO2 emissions. CSI represents two thirds of global cement production outside China.
- Baseline emissions inventory, targets & annual reporting. Joint search for CO2 reductions.
- □ Thermal efficiency up 14 % and CO2 emissions 6% down per ton of clinker between 1990-2006.
- Yet industry-wide CO2 emissions increased by 35 % and cement output by 50 %.

REDD

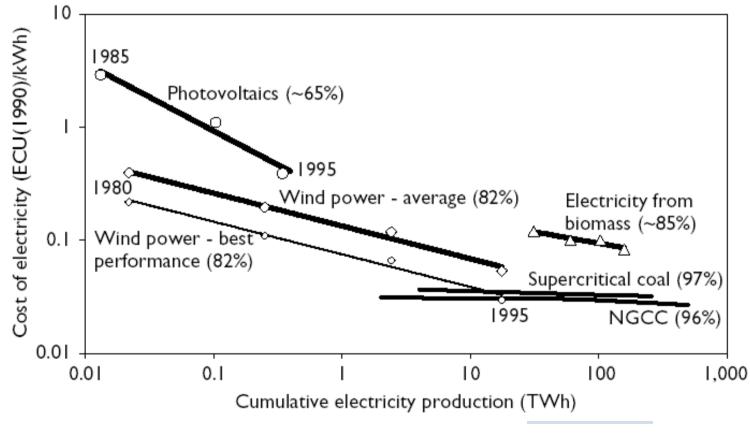
- 2007 Bali Action Plan called for "policy approaches and positive incentives on issues relating to reducing emissions from deforestation and forest degradation in developing countries"
- Deforestation & biomass decay contribute 15 % of GHG emissions. Two thirds of forest carbon stocks are in developing countries.
- Scoping (RED, REDD, REDD+), the establishment of a reference level, management plan and actions, and financial reward are the cornerstones of the draft scheme.
- Multiple sources of potential financing, from governments to voluntary carbon markets.

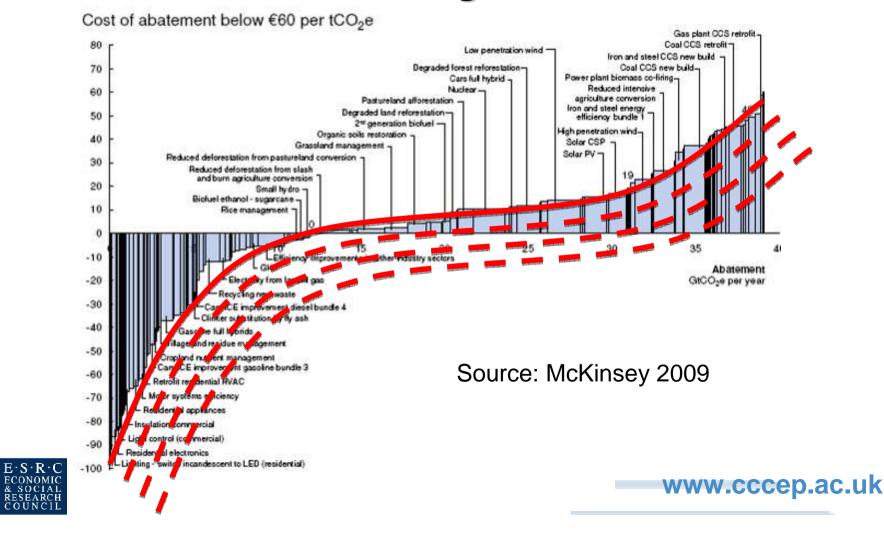


REDD

- Set-up costs & economies of scale favour larger projects
- Implementation costs low in legally protected & remote sites.
- Management and opportunity costs higher in tribal / indigenous lands and in frontier
- Who gets payments, who carries (opportunity) costs?

Conclusions


- There is rationale for polycentric climate change governance and indications exist that it is already emerging
- Non-conventional governance can muster substantial action to curb GHG emissions but is this focused on cost-saving solutions?
- □ There is thus scope for state-based solutions as well. How do state based and non-conventional forms of governance interact?
- To what extent non-conventional governance solutions generate new solutions, create & expand markets, mainstream and benchmark, and thereby shift cost curves?
- Do non-conventional forms of governance signal political willingness to accept binding commitments and create political pressure?


Marginal costs of abatement I

Costs and benefits of mitigation

Climate Change Policy and Governance: Taking Stock and Looking Ahead

Prof Jouni Paavola Centre for Climate Change Economics and Policy (CCCEP) Sustainability Research Institute School of Earth and Environment University of Leeds

