

Centre for Climate Change Economics and Policy

www.cccep.ac.uk

The Munich Re Programme: *Evaluating the Economics of Climate Risks and Opportunities in the Insurance Sector*

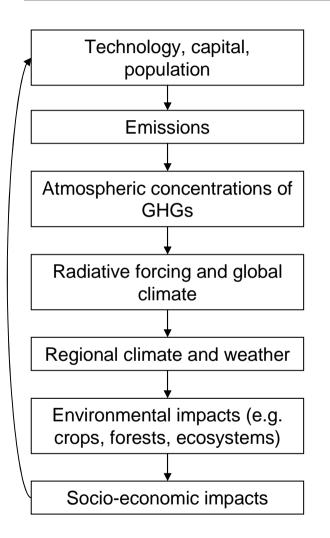
Economic models of climate change

Dr Simon Dietz

Deputy Director

CCCEP and the Grantham Research Institute on Climate Change and the Environment

LSE



"All models are wrong, but some models are useful" (Box, 1979)

- Modelling the economics of climate change (as a whole) is a formidable challenge
- Most of the models we have were built primarily for understanding, rather than for prediction
- But that subtle distinction gets lost when model outputs are (ab)used in the real world
- Nevertheless these models are useful, principally in telling us what assumptions are necessary and sufficient to sustain a certain course of action
- In particular, we know that the economics of climate change depends both on environmental changes and on value judgements
- The benefits of reducing carbon emissions are probably higher than previously thought

Centre for Climate Change Economics and Policy

What is an economic model of climate change?

- Actually there are many different kinds of economic model of parts of the system, e.g.:
 - Minimising the cost of hitting an emissions target
 - Valuing the loss of a species
- But here I just consider so-called 'integrated assessment models' of the whole system
 - Integrated in the sense of bringing together knowledge from economics, the sciences, and other social sciences
 - Applied, policy focus able to answer the question, "what is the optimal climate policy?"

What does the typical model look like?

(A.1)
$$W = \sum_{t=1}^{T_{max}} u[c(t), L(t)]R(t)$$

- (A.2) $R(t) = (1 + \rho)^{-t}$
- (A.3) $U[c(t), L(t)] = L(t)[c(t)^{1-\alpha}/(1-\alpha)]$
- (A.4) $Q(t) = \boldsymbol{\Omega}(t) [1 \boldsymbol{\Lambda}(t)] \boldsymbol{\Lambda}(t) \boldsymbol{K}(t)^{\gamma} \boldsymbol{L}(t)^{1-\gamma}$
- (A.5) $\Omega(t) = 1/[1 + \pi_1 T_{AT}(t) + \pi_2 T_{AT}(t)^2]$
- (A.6) $\Lambda(t) = \pi(t)\theta_1(t)\mu(t)^{\theta_2}$
- (A.7) Q(t) = C(t) + I(t)
- (A.8) c(t) = C(t)/L(t)

(A.9)
$$K(t) = I(t) + (1 - \delta_K)K(t - 1)$$

(A.10)
$$E_{Ind}(t) = \sigma(t) [1 - \mu(t)] A(t) K(t)^{\gamma} L(t)^{1-\gamma}$$

(A.11)
$$CCum \le \sum_{t=0}^{Tmax} E_{ind}(t)$$

(A.12)
$$E(t) = E_{Ind}(t) + E_{Land}(t)$$

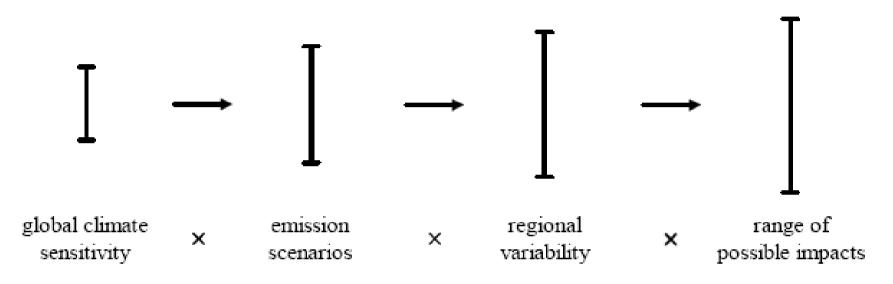
(A.13)
$$M_{AT}(t) = E(t) + \phi_{11}M_{AT}(t-1) + \phi_{21}M_{UP}(t-1)$$

- $\begin{array}{ll} ({\rm A}.14) & M_{U\!P}(t) = \pmb{\phi}_{12} M_{\rm AT}(t-1) + \pmb{\phi}_{22} M_{U\!P}(t-1) + \\ & \pmb{\phi}_{32} M_{LO}(t-1) \end{array}$
- (A.15) $M_{LO}(t) = \phi_{23}M_{UP}(t-1) + \phi_{33}M_{LO}(t-1)$
- (A.16) $F(t) = \eta \{ log_2[M_{AT}(t)/M_{AT}(1750)] \} + F_{EX}(t)$
- $\begin{array}{ll} ({\rm A}.17) & T_{\rm AT}(t) = T_{\rm AT}(t-1) + \xi_1 \{F(t) \xi_2 T_{\rm AT}(t-1) \\ & -\xi_3 [T_{\rm AT}(t-1) T_{\rm LO}(t-1)] \} \end{array}$
- $(A.18) \quad T_{LO}(t) = T_{LO}(t-1) + \xi_4 \{T_{AT}(t-1) T_{LO}(t-1)]\}$
- (A.19) $\pi(t) = \varphi(t)^{1-\theta_2}$

Climate Change Economics and Policy

Centre for

|||կտրոկ||

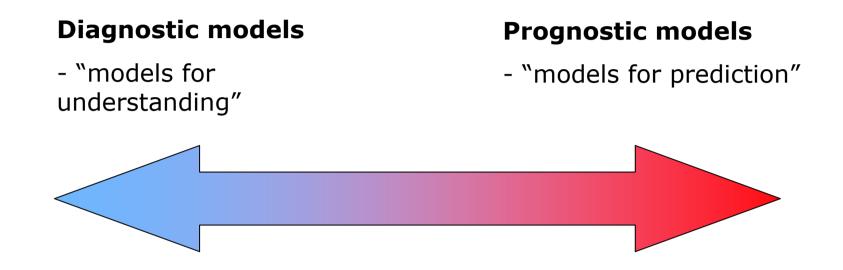

- Highly aggregated, procedurally (fairly) simple
- Standard model of economic growth, which produces emissions
- Simple climate model
 - Model in itself
 - But calibrates model parameters on other climate models (interesting)
- Damages
 - Are either enumerated from sector to sector (e.g. agriculture, malaria)
 - Or are a simple polynomial function
- Social welfare
 - Embodies standard economic philosophy (welfarism)
 - □ So compare costs and benefits

What do the models tell us?

- All agree to reject the extremes of no action on emissions and total cessation, but beyond that big differences
- William Nordhaus
 - "efficient emissions reductions follow a "policy ramp" in which policies involve modest rates of emissions reductions in the near term" (from A Question of Balance, 2008, p 14)
- Nicholas Stern
 - Our actions now and over the coming decades could create risks of major disruption to economic and social activity, on a scale similar to those associated with the great wars and the economic depression of the first half of the 20th century...So strong and prompt action is clearly warranted." (from *The Economics of Climate Change: The Stern Review*, 2007, p xv.)

Why the disagreement? Reason I: uncertainties over the 'facts' of the system

- Many of the model's parameters have huge ranges, so plenty of room for disagreement
- And very big difference in economics (where you are riskaverse) between a deterministic model, with a best estimate of each parameter, and a stochastic model, with ranges


Why the disagreement? Reason II: disagreement over values

- What is the present value of a £1 trillion benefit in 100 years
 - £249 billion with the Stern Review's c. 1.4% discount rate
 - £3 billion with a 6% discount rate
- And another issue is how much weight to put on costs and benefits in other regions

So what are the models good for?

- Economic models of climate change were built primarily for understanding, but have become used as models for prediction, without substantially changing in character
- There are other examples of this in the history of economic thought (e.g. the 'Solow' growth model gave birth to growth accounting)

When understanding becomes prediction

□ From the *Stern Review*, chapter 6:

"The large uncertainties in this type of modelling and calculation should not be ignored"

From the Observer, front page, on publication of the Stern Review

Main points repeated

- Modelling the economics of climate change (as a whole) is a formidable challenge
- Most of the models we have were built primarily for understanding, rather than for prediction
- But that subtle distinction gets lost when model outputs are (ab)used in the real world
- Nevertheless these models are useful, principally in telling us what assumptions are necessary and sufficient to sustain a certain course of action
- In particular, we know that the economics of climate change depends both on environmental changes and on value judgements
- The benefits of reducing carbon emissions are probably higher than previously thought

